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Abstract
According to Haldane’s conjecture, there is a spin gap of the excitation spectrum in integer
Heisenberg spin chains whereas half-integer spin chains have a gapless excitation spectrum. In
an earlier publication (Hung and Gong 2005 Phys. Rev. B 71 054413), the Haldane gap and
other properties of the spin-1 system are explained using a spin-1/2 alternating bond chain
model. The ferromagnetic–ferromagnetic–antiferromagnetic Heisenberg spin-1/2 chain is
expected to behave similarly to the uniform spin-3/2 Heisenberg chain for strong ferromagnetic
coupling. And the general nonuniform spin-1/2 chain may be used to explain the properties of
the integer and half-integer high spin-S chains, consistently. In this paper, we provide a detailed
numerical verification for the above problems.

(Some figures in this article are in colour only in the electronic version)

In 1983, Haldane [1] claimed that the integer spin
antiferromagnetic Heisenberg (AFH) chains have a gap in the
excitation spectrum and an exponential decay of the ground
state spin correlation function. However, the spectrum of the
half-integer spin AFH chain is gapless and the decay of the
ground state spin correlation follows a power law. Since then,
there has been a lot of work investigating this conjecture, by
studying the uniform AFH chains [2–4] and other modulated
spin chains [5–7].

Recently the Haldane problem was studied taking
another, reverse approach by Hung and Gong [8]. They
used the Heisenberg spin-1/2 alternating bond chain [9]
(ABC) in which the nearest neighbor exchange couplings
are ferromagnetic (FM) J1 and antiferromagnetic (AF) J2,
alternately. Hereafter this is taken as the period-2 ABC.
And they provide numerical evidence for the period-2 ABC
approaching the uniform spin-1 AFH chain with the same AF
coupling J2 when the ratio of AF to FM coupling strengths is
small enough, and explain a possible origin of the Haldane gap
in the uniform spin-1 AFH chain, which is four times the gap
of the period-2 ABC.

The ferromagnetic–ferromagnetic–antiferromagnetic Hei-
senberg spin-1/2 chain is expected to behave similarly to the
uniform spin-3/2 Heisenberg chain for strong ferromagnetic
coupling [10]. In this paper, we try to give a numerical
verification that the spin-1/2 ABC can also approach the half-
integer spin AFH chain and explain its gapless excitation
spectrum. Then we can say that the Haldane problem can

be completely approached by the nonuniform spin-1/2 ABC
model.

For discussion of the aforementioned problem, we define
the period-n ABC model as follows. Each spin-n/2 site in the
uniform spin-n/2 AFH chain is replaced by a FM multimer or
a subchain composed of n s = 1/2 spins, between any two
nearest neighboring (n.n.) spins s = 1/2 in each subchain
connected with FM bonds, and the AF couplings exist between
the edge spins of two n.n. subchains. The idea of representing
spin-n/2 operators as the sums of 2n spin-1/2 ones has been
applied widely for Haldane chains [8, 11, 12]. The model
Hamiltonian is

H = J1

∑

i/n /∈N∗
�Si · �Si+1 + J2

∑

i/n∈N∗
�Si · �Si+1. (1)

Here Si denotes a spin-1/2 operator at site i . N∗ denotes the
set of positive integers. If i/n is not an integer, i.e., spins �Si and
�Si+1 belong to the same subchain, the couplings are J1 (<0).
Otherwise, if i/n is an integer, the couplings are J2 (>0).
Also we define the parameter α ≡ |J2/J1|, and consider only
the case of the small α limit. We will set |J1| ≡ 1 and the
energy is measured in units of |J1|. In the case of S = 3/2,
we have the ferromagnetic–ferromagnetic–antiferromagnetic
trimerized spin-1/2 Heisenberg chain [10]. Later we call this
the J1–J1–J2 model or the period-3 ABC (figure 1).

In this paper, the above questions will be answered
through numerical calculation by using the density matrix
renormalization group (DMRG) method [13]. For the case
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J1---Ferromagnetic

J2---Anti-ferromagnetic

Figure 1. The structure of the J1–J1–J2 model.

Figure 2. The excitation energy Em − E0 of the period-3 ABC at
α = 0.01 as a function of the inverse chain length 1/L . Also shown
is the excitation energy E2 − E0 of the period-2 ABC. Dotted lines
are guides to the eye. They are straight lines fitted to the last few
points.

of S = 3/2, the physical properties of the period-3 ABC
are calculated and, making a comparison with those of the
uniform AF J2 spin-3/2 model, we find that they approach
each other in the small α limit. In addition, in the small α

limit the ratio of 〈Si · Si+1〉s=1/2 for the AF coupled pairs in
the period-3 ABC and 〈Si · Si+1〉s=3/2 for the uniform spin-
n/2 AFH chain is 1/32. And the dimerization parameter
q(x) = 〈Sxn · Sxn+1 − S(x−1)n · S(x−1)n+1〉 of the AF coupled
bond that is number x counting from the end of the chain for
the ground states of the period-n (n = 2, 3, 4, 5) ABC will also
be examined.

Figure 2 shows the excitation energies Em − E0 (m = 1–
4) as a function of the inverse chain length L−1 for the case of
α = 0.01. Em is the lowest energy in the subspace Sz

tot = m.
The calculations are performed for the open spin chains with
even numbers of sites, i.e., L can take the values 12, 24, 30,
60, 90, 150, 180, and 240 consecutively. Thus the ground state
is in the Sz

tot = 0 subspace. M = 128 states are retained in the
DMRG calculation. The truncation error is about 10−12, and
the energies are well converged. For comparison, the excitation
energy E2 − E0 of the period-2 (spin-1) ABC is plotted in
the same diagram. It is gapped, and approaches 0.001 in the
thermodynamic limit. In contrast, in the case of the period-3
ABC, Em − E0 is a monotonically decreasing function of L
and approaches zero in the large L limit in all four cases. So
the excitation spectrum of the model period-3 ABC is gapless
in the thermodynamic limit (L → ∞).

Next, the expectation values of the z component of the
spin 〈Sz

i 〉 at each site i of the period-3 ABC with L = 180
lattice sites, α = 0.01 and an open boundary condition in

Figure 3. The expectation value 〈Sz
i 〉 in subspace Sz

tot = 1 for the
L = 180 J1–J1–J2 chain at α = 0.01, in comparison of that for the
L = 60 uniform AFH spin-3/2 chain.

subspace Sz
tot = 1 are shown in figure 3. We can see that (i)

the expected spin values for the FM trimers coincide well with
〈Sz

i 〉 for the uniform spin-3/2 AFH chain (e.g., for α = 0.01,
〈Sz

1 + Sz
2 + Sz

3〉 ∼ 0.588 53 for the edge trimer of the period-3
ABC, which is very close to the value (0.576 18) for the end
spin of the uniform spin-3/2 AFH chain); (ii) the expectation
values 〈Sz

i 〉 for the three spins in each trimer are nearly the
same, irrespective of whether α = 0.01 or 0.001. We conclude
that the edge state of the uniform spin-3/2 AFH chain is
actually the state of the edge trimer in the period-3 ABC. Like
those for open uniform S > 1/2 AFH chains [14], the first
excited states consist of spin excitations localized around edges
of spin chains. But the decay length is three times the decay
length of the spin-3/2 AFH chain. This is a surface state due
to the quantum many-body effect.

The expectation values of the local bond strengths 〈Si ·
Si+1〉s=1/2 for all FM trimers are equal to 0.25, while the
expectation value of the local AF bond strength is around 0.314
and has a dimerization character. Upon decreasing the value of
α, 〈Si ·Si+1〉s=1/2 for the AF coupled pairs in the period-3 ABC
will approach 〈Si · Si+1〉s=3/2 for the uniform spin-3/2 AFH
chain scaled down by a factor of 1/32 more and more closely,
as in figure 4(a). In the small α limit (α < 0.001), they are
actually equal.

As regards the ratio of 〈Si · Si+1〉s=1/2 for AF coupled
pairs in a general period-n ABC and 〈Si · Si+1〉S=n/2 for the
uniform spin-n/2 AFH chain, it is 1/n2 numerically for even
higher spin chains. As shown in figure 4(b), the ratio of the
calculated results for 〈Si · Si+1〉s=2 for an L = 60 S = 2
AFH chain and 〈Si · Si+1〉s=1/2 for the L = 240 period-4
ABC (α = 0.001) is 16, while the ratio of 〈Si · Si+1〉s=5/2

for an L = 60 S = 2.5 AFH chain and 〈Si · Si+1〉s=1/2

for the L = 300 period-5 ABC (α = 0.001) is 25. It
should be recalled that, in the uniform spin-n/2 AFH chain, the
AF exchange interactions act between the n interior electrons
(spin-1/2 ones), and therefore all n interior electrons of each
atom contribute to the AF exchange energy. In other words, for
any two nearest neighbor atoms, there are n2 pairs of electrons

2



J. Phys.: Condens. Matter 20 (2008) 215232 L-H Pan and C-D Gong

Figure 4. (a) The comparison of the local bond strength of the AF
coupled pairs for the L = 180 period-3 ABC at α = 0.005, 0.001
and 〈Si · Si+1〉s=3/2/9 for the L = 60 uniform AFH spin-3/2 chain in
the ground state. (b) The result for the L = 240 period-4 ABC and
the L = 300 period-5 ABC at α = 0.001, and the corresponding
〈Si · Si+1〉s=n/2/n2 for the uniform AFH spin-n/2 (n = 4, 5) chain in
the ground state.

participating in the AF interaction, while in the equivalent
ABC model, the AF exchange interactions only act between
one pair of electrons. So in the calculation of the AF exchange
energy, as well as the local bond strength of the systems, there
is a factor 1/n2.

The dimerization parameter q(x) = 〈Sxn ·Sxn+1 −S(x−1)n ·
S(x−1)n+1〉 [14] of the AF coupled bond that is number x
counting from the end of the chain for the ground states of
the general period-n ABC is shown in figure 5. For even
n, q(x) decays exponentially as the AF coupled bond moves
into the interior. q(x) = e−x/ξ ; here ξ is multimer length
dependent. For example, ξ is 1.85 for the period-2 ABC and
4.81 for the period-4 ABC. For odd n, q(x) decays following a
power law into the interior of the period-n ABC. q(x) = x−β ;

Figure 5. The dimerization
strength |q(x)| = |〈Sxn · Sxn+1 − S(x−1)n · S(x−1)n+1〉 of the AF
coupled bond that is number x counting from the end of the chain for
the period-n (2, 3, 4, 5) ABC of length n × 60 at α = 0.001.

here the exponent β is also multimer length dependent. β is
1.23 for the period-3 ABC and 1.61 for the period-5 ABC.
Similar behavior has been previously observed for the uniform
Heisenberg chain. From figure 8 of [14], it has been seen
that there is a huge difference in behavior of the dimerization
parameter between integer and half-integer open AFH chains.
So the huge difference in behavior of q(x) between even and
odd n reflects another aspect: that the period-n ABC may
approach a uniform spin-n/2 AFH chain.

In summary, numerical results for the period-3 ABC are
presented and compared with ones for the uniform spin-3/2
AFH chain. We deduce that the excitation spectrum for the
period-3 ABC is gapless in the small α limit. The spin
density and the local bond strength of the period-n ABC
(n = 2, 3, 4, 5) are equal to the corresponding properties of the
uniform spin-n/2 AFH model in the small α limit (α < 0.001)
only if 〈Si · Si+1〉s=1/2 for the AF coupled pairs in the period-n
ABC is replaced by the product of 1/n2 and 〈Si · Si+1〉S=n/2 for
the uniform spin-n/2 AFH model. Combining this with Hung
and Gong’s result [8], we may conclude that a general period-n
Heisenberg spin-1/2 alternating bond chain in the strong FM
limit can be used to approach a uniform spin-n/2 AFH chain
and to describe Haldane’s problem completely.
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